Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Stem Cell Rev Rep ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644403

RESUMO

Base editors, developed from the CRISPR/Cas system, consist of components such as deaminase and Cas variants. Since their emergence in 2016, the precision, efficiency, and safety of base editors have been gradually optimized. The feasibility of using base editors in gene therapy has been demonstrated in several disease models. Compared with the CRISPR/Cas system, base editors have shown great potential in hematopoietic stem cells (HSCs) and HSC-based gene therapy, because they do not generate double-stranded breaks (DSBs) while achieving the precise realization of single-base substitutions. This precise editing mechanism allows for the permanent correction of genetic defects directly at their source within HSCs, thus promising a lasting therapeutic effect. Recent advances in base editors are expected to significantly increase the number of clinical trials for HSC-based gene therapies. In this review, we summarize the development and recent progress of DNA base editors, discuss their applications in HSC gene therapy, and highlight the prospects and challenges of future clinical stem cell therapies.

2.
CNS Neurosci Ther ; 30(4): e14698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600891

RESUMO

AIMS: To investigate the key factors influencing glioma progression and the emergence of treatment resistance by examining the intrinsic connection between mutations in DNA damage and repair-related genes and the development of chemoresistance in gliomas. METHODS: We conducted a comprehensive analysis of deep-targeted gene sequencing data from 228 glioma samples. This involved identifying differentially mutated genes across various glioma grades, assessing their functions, and employing I-TASSER for homology modeling. We elucidated the functional changes induced by high-frequency site mutations in these genes and investigated their impact on glioma progression. RESULTS: The analysis of sequencing mutation results of deep targeted genes in integration revealed that ARID1A gene mutation occurs frequently in glioblastoma and alteration of ARID1A could affect the tolerance of glioma cells to temozolomide treatment. The deletion of proline at position 16 in the ARID1A protein affected the stability of binding of the SWI/SNF core subunit BRG1, which in turn affected the stability of the SWI/SNF complex and led to altered histone modifications in the CDKN1A promoter region, thereby affecting the biological activity of glioma cells, as inferred from modeling and protein interaction analysis. CONCLUSION: The ARID1A gene is a critical predictive biomarker for glioma. Mutations at the ARID1A locus alter the stability of the SWI/SNF complex, leading to changes in transcriptional regulation in glioma cells. This contributes to an increased malignant phenotype of GBM and plays a pivotal role in mediating chemoresistance.


Assuntos
Proteínas de Ligação a DNA , Glioblastoma , Fatores de Transcrição , Humanos , Proteínas de Ligação a DNA/genética , Glioblastoma/genética , Mutação/genética , Proteínas Nucleares/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Fatores de Transcrição/genética
3.
Heliyon ; 10(7): e28957, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601682

RESUMO

Background: Cushing disease (CD) is a rare clinical neuroendocrine disease. CD is characterized by abnormal hypercortisolism induced by a pituitary adenoma with the secretion of adrenocorticotropic hormone. Individuals with CD usually exhibit atrophy of gray matter volume. However, little is known about the alterations in topographical organization of individuals with CD. This study aimed to investigate the structural covariance networks of individuals with CD based on the gray matter volume using graph theory analysis. Methods: High-resolution T1-weighted images of 61 individuals with CD and 53 healthy controls were obtained. Gray matter volume was estimated and the structural covariance network was analyzed using graph theory. Network properties such as hubs of all participants were calculated based on degree centrality. Results: No significant differences were observed between individuals with CD and healthy controls in terms of age, gender, and education level. The small-world features were conserved in individuals with CD but were higher than those in healthy controls. The individuals with CD showed higher global efficiency and modularity, suggesting higher integration and segregation as compared to healthy controls. The hub nodes of the individuals with CD were Short insular gyri (G_insular_short_L), Anterior part of the cingulate gyrus and sulcus (G_and_S_cingul-Ant_R), and Superior frontal gyrus (G_front_sup_R). Conclusions: Significant differences in the structural covariance network of patients with CD were found based on graph theory. These findings might help understanding the pathogenesis of individuals with CD and provide insight into the pathogenesis of this CD.

4.
Front Neurol ; 15: 1308152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434206

RESUMO

Background and purposes: Treating intracranial stenosis with distal thrombosis (IS&DT) using traditional mechanical thrombectomy (MT) techniques has proven challenging. This study aimed to summarize the experience of utilizing the balloon-assisted tracking (BAT) technique for IS&DT. Methods: Demographic and morphologic characteristics of patients with IS&DT were collected for this study. The BAT technique, involving a half-deflated balloon outside the intermediate catheter tip, was used in all patients to navigate through the proximal stenosis. Various parameters were recorded, including the sequence of vascular reperfusion, the puncture-to-reperfusion time (PRT), the residual stenosis rate, and the occurrence of re-occlusion. The thrombolysis in cerebral infarction (TICI) scale was used to assess the reperfusion of intracranial vessels, with a TICI score of ≥2b considered as successful perfusion. The clinical status of patients was evaluated at three time points: pre-procedure, post-procedure, and at discharge using the modified Rankin score (mRS). Results: In this study, a total of 10 patients were diagnosed with IS&DT, consisting of 9 male patients (90.0%) and 1 female patient (10.0%). The patients' mean age was 63.10 years (ranging from 29 to 79 years). The mean National Institute of Health Stroke Scale (NIHSS) score before treatment was 24.3 (ranging from 12 to 40), indicating the severity of their condition. Following the procedure, all patients achieved successful reperfusion with a thrombolysis in cerebral infarction (TICI) score of ≥2b. The average puncture-to-reperfusion time (PRT) was 51.8 min (ranging from 25 to 100 min), indicating the time taken for the procedure. During the perioperative period, three patients (30.0%) experienced complications. One patient had hemorrhage, while two patients had contrast extravasation. Among these cases, only the patient with hemorrhage (10%) suffered from a permanent neurological function deficit. At discharge, the patient's condition showed improvement. The mean NIHSS score decreased to 13.2 (ranging from 1 to 34), indicating a positive response to treatment. The mean mRS score at discharge was 3.2 (ranging from 1 to 5), showing some level of functional improvement. Conclusion: In conclusion, the use of the balloon-assisted tracking (BAT) technique for treating intracranial stenosis with distal thrombosis (IS&DT) showed promising results. However, a moderate rate of perioperative complications was observed, warranting further investigation and refinement of the procedure.

5.
Dig Endosc ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433315

RESUMO

OBJECTIVES: This consensus was developed by the Asian EUS Group (AEG), who aimed to formulate a set of practice guidelines addressing various aspects of endoscopic ultrasound-guided tissue acquisition (EUS-TA). METHODS: The AEG initiated the development of consensus statements and formed an expert panel comprising surgeons, gastroenterologists, and pathologists. Three online consensus meetings were conducted to consolidate the statements and votes. The statements were presented and discussed in the first two consensus meetings and revised according to comments. Final voting was conducted at a third consensus meeting. The Grading of Recommendations, Assessment, Development, and Evaluation system was adopted to define the strength of the recommendations and quality of evidence. RESULTS: A total of 20 clinical questions and statements regarding EUS-TA were formulated. The committee recommended that fine-needle biopsy (FNB) needles be preferred over conventional fine-needle aspiration (FNA) needles for EUS-TA of subepithelial lesions. For solid pancreatic masses, rapid on-site evaluation is not routinely recommended when FNB needles are used. For dedicated FNB needles, fork-tip and Franseen-tip needles have essentially equivalent performance. CONCLUSION: This consensus provides guidance for EUS-TA, thereby enhancing the quality of EUS-TA.

6.
J Control Release ; 367: 620-636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311244

RESUMO

Chemotherapeutic efficacy for pancreatic cancer is severely compromised by limited drug availability to tumor cells. Herein, we constructed a cancer cell membrane-fused liposome containing a siATG5-loaded calcium phosphate (CaP) core, termed CLip@siATG5. Through cancer cell membrane camouflage, the liposomes evaded immune clearance, actively infiltrated tumor tissues, and were preferentially taken up by homotypic tumor cells. Then, siATG5 escaped from the endosomes and was liberated in the cytoplasm, mainly benefiting from CaP dissolution-induced endosome rupture and liposome disassembly in acidic endosomes. The released siATG5 silenced autophagy protein 5 (ATG5) to inhibit autophagy, starving tumor cells. An alternative nutrient procurement pathway, macropinocytosis, was then upregulated in the cells, leading to increased uptake of the albumin-bound chemotherapeutic agent (nanoparticle albumin-bound paclitaxel (Nab-PTX)). Finally, in a murine pancreatic cancer model, CLip@siATG5 combined with Nab-PTX exerted superior efficacy to a twofold dose of Nab-PTX while avoiding its toxicity. Overall, we justified enhancing chemotherapeutic delivery by modulating the pancreatic cancer cell metabolism, which will enlighten the development of more effective chemotherapeutic adjuvants for pancreatic cancer in the future.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Lipossomos/uso terapêutico , Paclitaxel/uso terapêutico , Paclitaxel/farmacologia , Neoplasias Pancreáticas/patologia , Albuminas , Pâncreas/metabolismo , Membrana Celular/metabolismo , Linhagem Celular Tumoral , Paclitaxel Ligado a Albumina/farmacologia
7.
Nat Rev Chem ; 8(3): 179-194, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337008

RESUMO

DNA computing and DNA data storage are emerging fields that are unlocking new possibilities in information technology and diagnostics. These approaches use DNA molecules as a computing substrate or a storage medium, offering nanoscale compactness and operation in unconventional media (including aqueous solutions, water-in-oil microemulsions and self-assembled membranized compartments) for applications beyond traditional silicon-based computing systems. To build a functional DNA computer that can process and store molecular information necessitates the continued development of strategies for computing and data storage, as well as bridging the gap between these fields. In this Review, we explore how DNA can be leveraged in the context of DNA computing with a focus on neural networks and compartmentalized DNA circuits. We also discuss emerging approaches to the storage of data in DNA and associated topics such as the writing, reading, retrieval and post-synthesis editing of DNA-encoded data. Finally, we provide insights into how DNA computing can be integrated with DNA data storage and explore the use of DNA for near-memory computing for future information technology and health analysis applications.


Assuntos
Computadores Moleculares , DNA , DNA/química , Redes Neurais de Computação , Armazenamento e Recuperação da Informação
8.
Nano Lett ; 24(9): 2831-2838, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385633

RESUMO

High-entropy borides hold potential as electrocatalysts for water oxidation. However, the synthesis of the tailored nanostructures remains a challenge due to the thermodynamic immiscibility of polymetallic components. Herein, a FeCoCuMnRuB nanobox decorated with a nanosheet array was synthesized for the first time by a "coordination-etch-reduction" method. The FeCoCuMnRuB nanobox has various structural characteristics to express the catalytic performance; meanwhile, it combines the high-entropy effect of multiple components with the electron trap effect induced by electron-deficient B, synergistically regulating its electronic structure. As a result, FeCoCuMnRuB nanobox exhibits enhanced OER activity with a low overpotential (η10 = 233 mV), high TOF value (0.0539 s-1), small Tafel slope (61 mV/dec), and a satisfactory stability for 200 h, outperforming the high-entropy alloy and low-entropy borides. This work develops a high entropy and electron-deficient B-driven strategy for motivating the catalytic performance of water oxidation, which broadens the structural diversity and category of high-entropy materials.

9.
J Orthop Surg Res ; 19(1): 107, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303071

RESUMO

BACKGROUND: Evans and Hintermann lateral column lengthening (LCL) procedures are both widely used to correct adult acquired flatfoot deformity (AAFD), and have both shown good clinical results. The aim of this study was to compare these two procedures in terms of corrective ability and biomechanics influence on the Chopart and subtalar joints through finite element (FE) analysis. METHODS: Twelve patient-specific FE models were established and validated. The Hintermann osteotomy was performed between the medial and posterior facets of the subtalar joint; while, the Evans osteotomy was performed on the anterior neck of the calcaneus around 10 mm from the calcaneocuboid joint surface. In each procedure, a triangular wedge of varying size was inserted at the lateral edge. The two procedures were then compared based on the measured strains of superomedial calcaneonavicular ligaments and planter facia, the talus-first metatarsal angle, and the contact characteristics of talonavicular, calcaneocuboid and subtalar joints. RESULTS: The Hintermann procedure achieved a greater correction of the talus-first metatarsal angle than Evans when using grafts of the same size, indicating that Hintermann had stronger corrective ability. However, its distributions of von-Mises stress in the subtalar, talonavicular and calcaneocuboid joints were less homogeneous than those of Evans. In addition, the strains of superomedial calcaneonavicular ligaments and planter facia of Hintermann were also greater than those of Evans, but both generally within the safe range (less than 6%). CONCLUSION: This FE analysis study indicates that both Evans and Hintermann procedures have good corrective ability for AAFD. Compared to Evans, Hintermann procedure can provide a stronger corrective effect while causing greater disturbance to the biomechanics of Chopart joints, which may be an important mechanism of arthritis. Nevertheless, it yields a better protection to the subtalar joint than Evans osteotomy. CLINICAL RELEVANCE: Both Evans and Hintermann LCL surgeries have a considerable impact on adjacent joints and ligament tissues. Such effects alongside the overcorrection problem should be cautiously considered when choosing the specific surgical method. LEVEL OF EVIDENCE: Level III, case-control study.


Assuntos
Calcâneo , Pé Chato , Adulto , Humanos , Pé Chato/diagnóstico por imagem , Pé Chato/cirurgia , Estudos de Casos e Controles , Análise de Elementos Finitos , Calcâneo/diagnóstico por imagem , Calcâneo/cirurgia , Osteotomia/métodos
10.
Acta Pharm Sin B ; 14(2): 579-601, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322344

RESUMO

Lipid nanovehicles are currently the most advanced vehicles used for RNA delivery, as demonstrated by the approval of patisiran for amyloidosis therapy in 2018. To illuminate the unique superiority of lipid nanovehicles in RNA delivery, in this review, we first introduce various RNA therapeutics, describe systemic delivery barriers, and explain the lipid components and methods used for lipid nanovehicle preparation. Then, we emphasize crucial advances in lipid nanovehicle design for overcoming barriers to systemic RNA delivery. Finally, the current status and challenges of lipid nanovehicle-based RNA therapeutics in clinical applications are also discussed. Our objective is to provide a comprehensive overview showing how to utilize lipid nanovehicles to overcome multiple barriers to systemic RNA delivery, inspiring the development of more high-performance RNA lipid nanovesicles in the future.

11.
Chaos ; 34(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341762

RESUMO

Collective ordering behaviors are typical macroscopic manifestations embedded in complex systems and can be ubiquitously observed across various physical backgrounds. Elements in complex systems may self-organize via mutual or external couplings to achieve diverse spatiotemporal coordinations. The order parameter, as a powerful quantity in describing the transition to collective states, may emerge spontaneously from large numbers of degrees of freedom through competitions. In this minireview, we extensively discussed the collective dynamics of complex systems from the viewpoint of order-parameter dynamics. A synergetic theory is adopted as the foundation of order-parameter dynamics, and it focuses on the self-organization and collective behaviors of complex systems. At the onset of macroscopic transitions, slow modes are distinguished from fast modes and act as order parameters, whose evolution can be established in terms of the slaving principle. We explore order-parameter dynamics in both model-based and data-based scenarios. For situations where microscopic dynamics modeling is available, as prototype examples, synchronization of coupled phase oscillators, chimera states, and neuron network dynamics are analytically studied, and the order-parameter dynamics is constructed in terms of reduction procedures such as the Ott-Antonsen ansatz, the Lorentz ansatz, and so on. For complicated systems highly challenging to be well modeled, we proposed the eigen-microstate approach (EMP) to reconstruct the macroscopic order-parameter dynamics, where the spatiotemporal evolution brought by big data can be well decomposed into eigenmodes, and the macroscopic collective behavior can be traced by Bose-Einstein condensation-like transitions and the emergence of dominant eigenmodes. The EMP is successfully applied to some typical examples, such as phase transitions in the Ising model, climate dynamics in earth systems, fluctuation patterns in stock markets, and collective motion in living systems.

12.
Theranostics ; 14(3): 1101-1125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250041

RESUMO

Cancer remains a severe public health burden worldwide. One of the challenges hampering effective cancer therapy is that the existing cancer models hardly recapitulate the tumor microenvironment of human patients. Over the past decade, tumor organoids have emerged as an in vitro 3D tumor model to mimic the pathophysiological characteristics of parental tumors. Various techniques have been developed to construct tumor organoids, such as matrix-based methods, hanging drop, spinner or rotating flask, nonadhesive surface, organ-on-a-chip, 3D bioprinting, and genetic engineering. This review elaborated on cell components and fabrication methods for establishing tumor organoid models. Furthermore, we discussed the application of tumor organoids to cancer modeling, basic cancer research, and anticancer therapy. Finally, we discussed current limitations and future directions in employing tumor organoids for more extensive applications.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Engenharia Genética , Organoides , Microambiente Tumoral
13.
Int J Psychophysiol ; 195: 112265, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981033

RESUMO

Multitasking with two or more media and devices has become increasingly common in our daily lives. The impact of chronic media multitasking on our cognitive abilities has received extensive concern. Converging studies have shown that heavy media multitaskers (HMM) have a greater demand for sensation seeking and are more easily distracted by task-irrelevant information than light media multitaskers (LMM). In this study, we analyzed the electroencephalogram data recorded during resting-state periods to investigate whether HMM and LMM differ with regard to basic resting network activation. Microstate analysis revealed that the activation of the attention network is weakened while the activation of the salience network is enhanced in HMM compared to LMM. This suggests that HMM's attention control is more likely to be guided by surrounding stimuli, which indirectly supports the deficit-producing hypothesis. Moreover, our results revealed that HMM had an enhanced visual network and may feel less comfortable than LMM during resting-state periods with eyes closed, supporting the view that HMM require more sensation seeking than LMM. Taken together, these results indicate that chronic media multitasking leads to HMM allocating attention in a bottom-up or stimulus-driven manner, while LMM deploy a top-down approach.


Assuntos
Cognição , Emoções , Humanos , Cognição/fisiologia , Eletroencefalografia , Olho , Encéfalo
14.
J Control Release ; 366: 85-103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142964

RESUMO

Recently, biomembrane nanostructures, such as liposomes, cell membrane-coated nanostructures, and exosomes, have demonstrated promising anticancer therapeutic effects. These nanostructures possess remarkable biocompatibility, multifunctionality, and low toxicity. However, their therapeutic efficacy is impeded by chemoresistance and radiotherapy resistance, which are closely associated with autophagy. Modulating autophagy could enhance the therapeutic sensitivity and effectiveness of these biomembrane nanostructures by influencing the immune system and the cancer microenvironment. For instance, autophagy can regulate the immunogenic cell death of cancer cells, antigen presentation of dendritic cells, and macrophage polarization, thereby activating the inflammatory response in the cancer microenvironment. Furthermore, combining autophagy-regulating drugs or genes with biomembrane nanostructures can exploit the targeting and long-term circulation properties of these nanostructures, leading to increased drug accumulation in cancer cells. This review explores the role of autophagy in carcinogenesis, cancer progression, metastasis, cancer immune responses, and resistance to treatment. Additionally, it highlights recent research advancements in the synergistic anticancer effects achieved through autophagy regulation by biomembrane nanostructures. The review also discusses the prospects and challenges associated with the future clinical translation of these innovative treatment strategies. In summary, these findings provide valuable insights into autophagy, autophagy-modulating biomembrane-based nanostructures, and the underlying molecular mechanisms, thereby facilitating the development of promising cancer therapeutics.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Apresentação de Antígeno , Autofagia , Membrana Celular , Microambiente Tumoral
15.
Phys Rev E ; 108(5-1): 054203, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115455

RESUMO

Synchronization is a critical phenomenon that displays a pivotal role in a wealth of dynamical processes ranging from natural to artificial systems. Here, we untangle the synchronization optimization in a system of globally coupled phase oscillators incorporating heterogeneous interactions encoded by the deterministic-random coupling. We uncover that, within the given restriction, the added deterministic correlations can profoundly enhance the synchronizability in comparison with the uncorrelated scenario. The critical points manifesting the onset of synchronization and desynchronization transitions, as well as the level of phase coherence, are significantly shaped by the increment of deterministic correlations. In particular, we provide an analytical treatment to properly ground the mechanism underlying synchronization enhancement and substantiate that the analytical predictions are in fair agreement with the numerical simulations. This study is a step forward in highlighting the importance of heterogeneous coupling among dynamical agents, which provides insights for control strategies of synchronization in complex systems.

16.
Heliyon ; 9(11): e21695, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027872

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, which is distinguished by the loss of dopaminergic (DA) neurons in the substantia nigra and the formation of intraneuronal. Numerous studies showed that the damage and dysfunction of mitochondria may play key roles in DA neuronal loss. Thus, it is necessary to seek therapeutic measures for PD targeting mitochondrial function and biogenesis. In this study, through screening the purchased compound library, we found that marine derived vidarabine had significant neuroprotective effects against rotenone (ROT) induced SH-SY5Y cell injury. Further studies indicated that vidarabine pretreatment significantly protected ROT-treated SH-SY5Y cells from toxicity by preserving mitochondrial morphology, improving mitochondrial function, and reducing cell apoptosis. Vidarabine also reduced the oxidative stress and increased the expression levels of PGC-1α, NRF1, and TFAM proteins, which was accompanied by the increased mitochondrial biogenesis. However, the neuroprotective effects of vidarabine were counteracted in the presence of SIRT1-specific inhibitor Ex-527. Besides, vidarabine treatment attenuated the weight loss, alleviated the motor deficits and inhibited the neuronal injury in the MPTP induced mouse model. Thus, vidarabine may exert neuroprotective effects via a mechanism involving specific connections between the SIRT1-dependent mitochondrial biogenesis and its antioxidant capacity, suggesting that vidarabine has potential to be developed into a novel therapeutic agent for PD.

17.
Environ Sci Pollut Res Int ; 30(56): 118647-118661, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37917270

RESUMO

The problems with the current food distribution system are laid forth in this study. Getting high-quality agricultural and food products to consumers is the goal of what is known as the "agri-food supply chain." Agri-food supply chain knowledge exchange and risk management culture are being studied, as is the effect of supply chain management methods on business success. We are seeing an increase in the regularity of supply chain interruptions. The recent supply chain interruptions and their associated consequences highlight the necessity for robust supply systems. The primary goal of this research is to examine the interplay between critical antecedents of the agri-food supply chain; supply chain resilience (including risk management culture); supply chain connectivity, visibility, collaboration, and agility; and the effect these factors have on supply chain resilience and, ultimately, firm performance. With the same foundational elements and backing from the literature, an empirical model has been suggested. From September 2020 to June 2021, 245 random samples were collected throughout Indonesia for this investigation. The suggested model and the interdependencies among the crucial antecedents have been verified using partial least squares-structural equation modeling (PLS-SEM). Findings from this study support the notion that agri-food supply chains benefit from increased emphasis on traceability, transparency, information sharing, and a culture of risk management. One major takeaway from this study is that by adopting the suggested methodology, businesses may build and strengthen their supply chain resilience capabilities by institutionalizing a risk management culture, raising employee risk awareness, and holding regular risk assessment drills. The study also suggests that businesses that want to strengthen their supply chains can do so by adopting information and communications technologies and visibility tools to improve their supply chain connectivity and visibility, allowing them to respond to and recover from disruptions in the supply chain more quickly. The model is validated using data from Indonesia's industrial sector. In order to establish supply chain resilience, the suggested model provides a comprehensive perspective that defines the interconnections between key antecedents. We conclude with some thoughts and suggestions for further study.


Assuntos
Gestão do Conhecimento , Gestão de Riscos , Disseminação de Informação , Medição de Risco , Agricultura
20.
Hear Res ; 437: 108853, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441879

RESUMO

Bimodal hearing, in which a contralateral hearing aid is combined with a cochlear implant (CI), provides greater speech recognition benefits than using a CI alone. Factors predicting individual bimodal patient success are not fully understood. Previous studies have shown that bimodal benefits may be driven by a patient's ability to extract fundamental frequency (f0) and/or temporal fine structure cues (e.g., F1). Both of these features may be represented in frequency following responses (FFR) to bimodal speech. Thus, the goals of this study were to: 1) parametrically examine neural encoding of f0 and F1 in simulated bimodal speech conditions; 2) examine objective discrimination of FFRs to bimodal speech conditions using machine learning; 3) explore whether FFRs are predictive of perceptual bimodal benefit. Three vowels (/ε/, /i/, and /ʊ/) with identical f0 were manipulated by a vocoder (right ear) and low-pass filters (left ear) to create five bimodal simulations for evoking FFRs: Vocoder-only, Vocoder +125 Hz, Vocoder +250 Hz, Vocoder +500 Hz, and Vocoder +750 Hz. Perceptual performance on the BKB-SIN test was also measured using the same five configurations. Results suggested that neural representation of f0 and F1 FFR components were enhanced with increasing acoustic bandwidth in the simulated "non-implanted" ear. As spectral differences between vowels emerged in the FFRs with increased acoustic bandwidth, FFRs were more accurately classified and discriminated using a machine learning algorithm. Enhancement of f0 and F1 neural encoding with increasing bandwidth were collectively predictive of perceptual bimodal benefit on a speech-in-noise task. Given these results, FFR may be a useful tool to objectively assess individual variability in bimodal hearing.


Assuntos
Implante Coclear , Implantes Cocleares , Auxiliares de Audição , Percepção da Fala , Humanos , Fala , Percepção da Fala/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...